If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x-150=0
a = 1; b = 9; c = -150;
Δ = b2-4ac
Δ = 92-4·1·(-150)
Δ = 681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{681}}{2*1}=\frac{-9-\sqrt{681}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{681}}{2*1}=\frac{-9+\sqrt{681}}{2} $
| 5(4m-10)=30 | | (22+24)/2=x+34 | | 3/6=y/8 | | 5=1x10 | | 3=1/2(12=t) | | r=-5r | | 5(-6-6x)=-330 | | 5(-6-6x)=330 | | -63=-28+x | | (9x-11)-(x-5=) | | -2/38w+53=59 | | 5/8*c+13=18 | | 2x+30+30+50+50=180 | | -14r+14=-17 | | 10x-20+2x+60=180 | | k/5.2+81.9=47.4 | | 5+10*1=y | | 3.8b=22.8 | | -2y+12=20 | | -5(-4+3x)=-40 | | x²+2x-480=0 | | 3(1x+4)=45 | | -6(7-7x)=-84 | | -10=x21 | | 4f=272 | | 50x=60x-40 | | Y÷2+y=-1 | | (6.8+x)/2=11.6 | | -8n-2=30 | | 8.2r=24.6 | | 2×+5y=20 | | 2/3x-6=1/2x-5 |